Long-Run Behavior of Variational Integrators in the Stochastic Context
نویسندگان
چکیده
This paper presents a Lie-Trotter splitting for inertial Langevin equations (Geometric Langevin Algorithm) and analyzes its long-time statistical properties.The splitting is defined as a composition of a variational integrator with an Ornstein-Uhlenbeck flow. Assuming the exact solution and the splitting are geometrically ergodic, the paper proves the discrete invariant measure of the splitting approximates the invariant measure of inertial Langevin to within the accuracy of the variational integrator in representing the Hamiltonian. In particular, if the variational integrator admits no energy error, then the method samples the invariant measure of inertial Langevin without error. Numerical validation is provided using explicit variational integrators with first, second, and fourth order accuracy.
منابع مشابه
Long-Run Accuracy of Variational Integrators in the Stochastic Context
This paper presents a Lie–Trotter splitting for inertial Langevin equations (geometric Langevin algorithm) and analyzes its long-time statistical properties. The splitting is defined as a composition of a variational integrator with an Ornstein–Uhlenbeck flow. Assuming that the exact solution and the splitting are geometrically ergodic, the paper proves the discrete invariant measure of the spl...
متن کاملStochastic Variational Partitioned Runge-Kutta Integrators for Constrained Systems
Stochastic variational integrators for constrained, stochastic mechanical systems are developed in this paper. The main results of the paper are twofold: an equivalence is established between a stochastic Hamilton-Pontryagin (HP) principle in generalized coordinates and constrained coordinates via Lagrange multipliers, and variational partitioned Runge-Kutta (VPRK) integrators are extended to t...
متن کاملNonsmooth Lagrangian Mechanics and Variational Collision Integrators
Variational techniques are used to analyze the problem of rigid-body dynamics with impacts. The theory of smooth Lagrangian mechanics is extended to a nonsmooth context appropriate for collisions, and it is shown in what sense the system is symplectic and satisfies a Noether-style momentum conservation theorem. Discretizations of this nonsmooth mechanics are developed by using the methodology o...
متن کاملVariational integrators for degenerate Lagrangians, with application to point vortices
We develop discrete mechanics and variational integrators for a class of degenerate Lagrangian systems, and apply these integrators to a system of point vortices. Excellent numerical behavior is observed. A longer term goal is to use these integration methods in the context of control of mechanical systems, such as coordinated groups of underwater vehicles. In fact, numerical evidence given in ...
متن کاملAn Overview of Lie Group Variational Integrators and Their Applications to Optimal Control
We introduce a general framework for the construction of variational integrators of arbitrarily high-order that incorporate Lie group techniques to automatically remain on a Lie group, while retaining the geometric structure-preserving properties characteristic of variational integrators, including symplecticity, momentum-preservation, and good long-time energy behavior. This is achieved by con...
متن کامل